



- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work



- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work



Introduction, Problem statement, System model

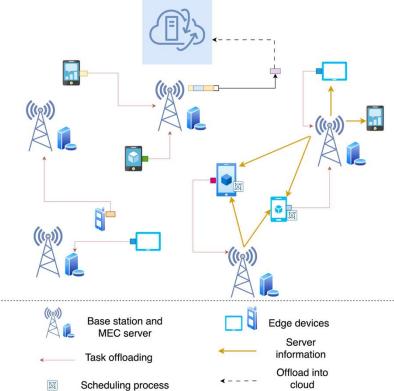
#### Mobile edge computing systems

#### Advantages:

- Low latency & reduced backhaul traffic
- Efficient task offloading for autonomous/ITS services
- Proximity to users improves reliability & QoS

#### Drawbacks:

- High deployment & maintenance cost
- Limited compute/storage resources vs Cloud
- Complexity in mobility, orchestration & security





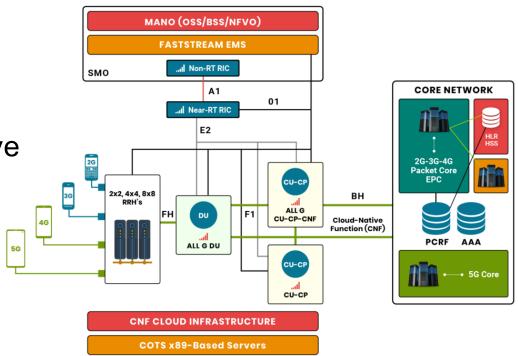
5

# Introduction, Problem statement, System model

 Open, interoperable multi-vendor ecosystem

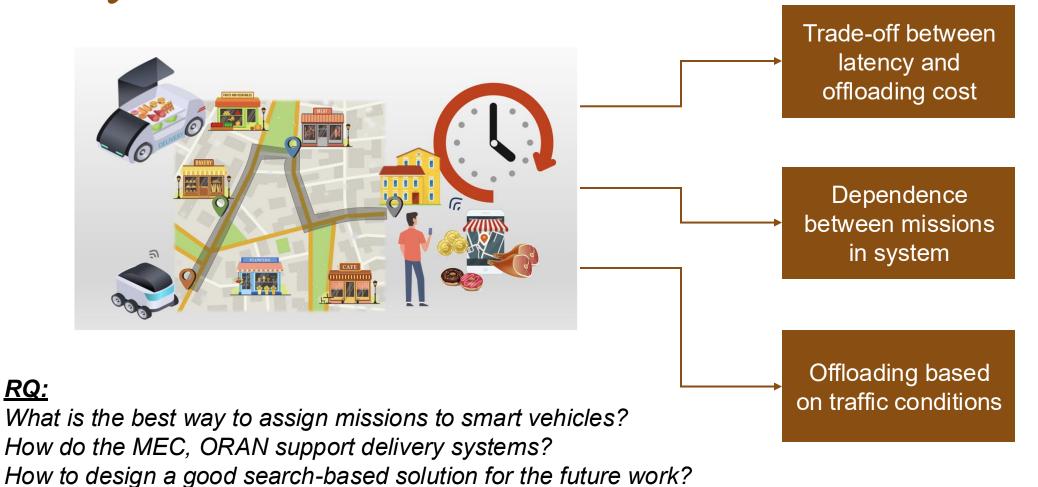
Flexible, software-defined, and cloud-native architecture

 Supports intelligent control via RIC (rApps/xApps)





# Introduction, Problem statement, System model





# Introduction, Problem statement, System

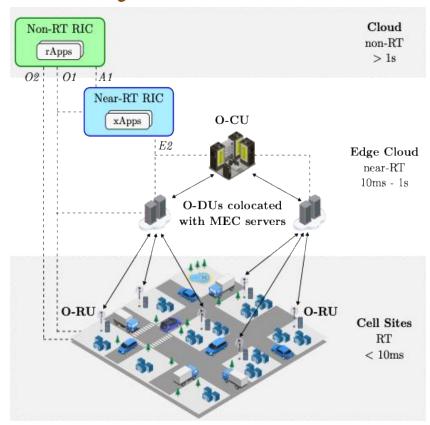
model

Optimize mission assignment & task offloading for autonomous vehicles in Open RAN–ITS

**Goal:** Maximize missions completed before deadlines

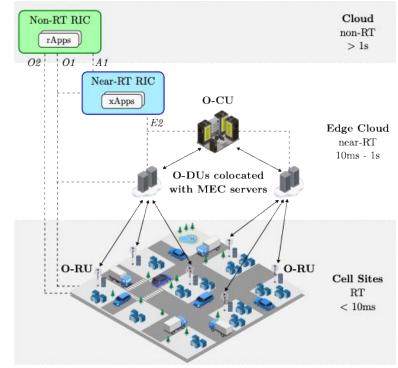
#### **Considering**:

- Mission dependencies
- Offloading cost/budget
- Communication, computation & travel delays



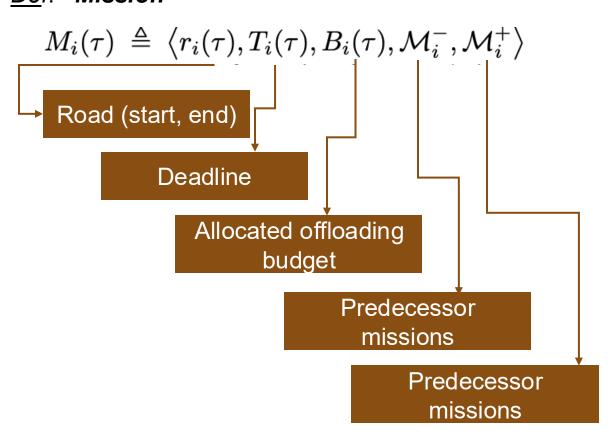


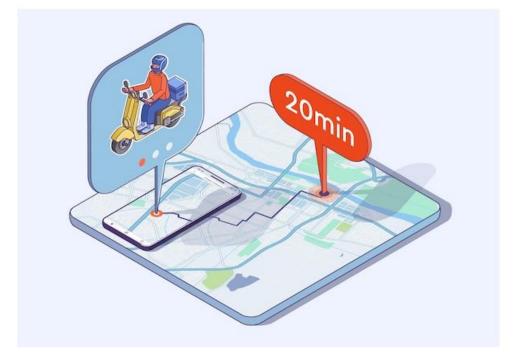
- There are MEC servers (edge) and a cloud server
- O-RU, O-DU, O-CU components map to real Open RAN layers
- RIC: Near-RT RIC (xApps) and Non-RT RIC (rApps) influence scheduling and control
- Vehicles communicate with RU → DU (MEC) → CU (Cloud)





#### Def. Mission

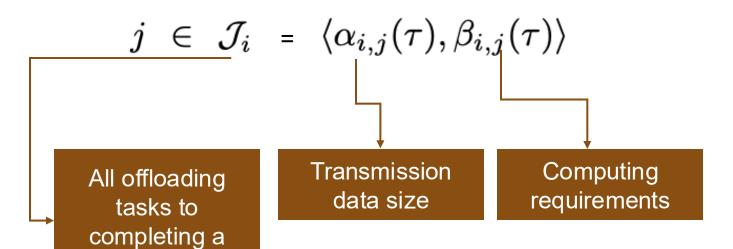


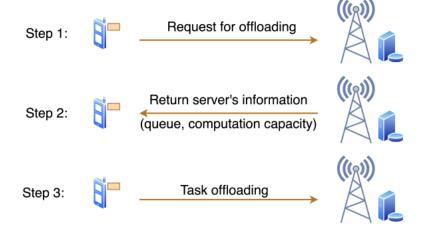




#### <u>Def.</u> Offloading Tasks of a mission i

mission







Picture source: https://arxiv.org/pdf/2507.18864

#### <u>Def.</u> Time spend to complete a mission

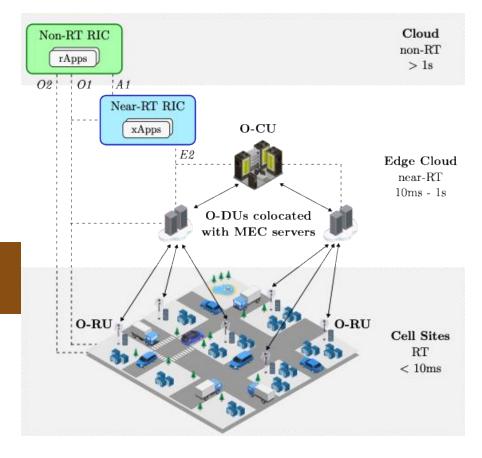
$$d_i(\tau) = d_i^{\text{move}}(\tau) + d_i^{\text{comm}}(\tau) + d^{\text{comp}}$$

#### <u>Def.</u> Offloading cost for completing mission

$$C_i( au) = \sum_{j=1}^{|\mathcal{J}_i|} C_{i,j}( au) = \sum_{j=1}^{|\mathcal{J}_i|} c_o(d_{i,j}^{\mathrm{comm}} + d_{i,j}^{\mathrm{comp}})$$
 Per-unit cost charge

#### <u>Def.</u> Remaining benefits

$$B_i^{\text{rema}}(\tau) = B_i(\tau) - C_i(\tau) \ge 0, \quad \forall M_i(\tau) \in \mathbf{M}(\tau)$$





- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work

## Optimization problem formulation

$$\mathscr{P}_1: \max_{\mathbf{D}(\tau)} \sum_{M_i(\tau) \in \mathbf{M}(\tau)} \mathbb{1}_{\{\delta_i(\tau) \leq T_i(\tau)\}}$$
  
s.t. (1), (3), (4), (5), (6), (10), (15).

- (1) All mission is assigned to K\* vehicles.
- (3) One mission is handled by a vehicle
- (4) Each mission has a specified order
- (5) All assigned missions has order in one vehicles
- (6) Ordering mission has to based on its successors and predecessors
- (10) All missions is completed validly if it is in considered time frame
- (15) Remaining benefits should not negative



- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work

# Proposed meta-heuristic algorithm

#### Limitation of original ARO:

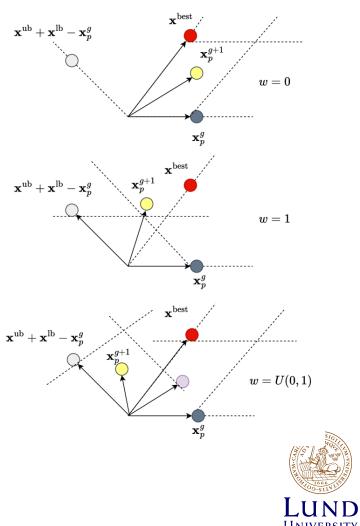
- Low initialization diversity → risk of premature convergence
- Detour foraging mixes exploration/exploitation inefficiently
- Random hiding lacks guidance from good solutions
- Less effective in dynamic, constraint-rich ITS optimization





# Proposed meta-heuristic algorithm

| Improvement<br>Category      | Enhancement in CGG-ARO                                                                    | Main Benefits                                                                         |  |
|------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Population<br>Initialization | Uses Piecewise Chaotic Map (PCM) instead of uniform random initialization                 | Increases population diversity, avoids premature convergence                          |  |
| Exploration<br>Mechanism     | Introduces Gaussian-based detour foraging to generate controlled random perturbations     | Enhances global search capability and coverage of the search space                    |  |
| Exploitation<br>Mechanism    | Integrates Opposition-Based Learning (OBL) when updating solutions                        | Accelerates convergence toward high-<br>quality regions and improves<br>refinement    |  |
| Random Hiding<br>Stage       | Updated using global best solution + random agent guidance instead of pure randomness     | Stronger local exploitation, reduces aimless search behavior                          |  |
| Search Balance<br>Strategy   | Clearer separation between exploration and exploitation phases based on energy factor (A) | More stable optimization, reduced risk of local optima trapping                       |  |
| Position Updating Dynamics   | Combination of chaotic behavior + Gaussian noise + OBL influence                          | Achieves better exploration—<br>exploitation trade-off in dynamic ITS<br>environments |  |



# Proposed meta-heuristic algorithm

#### 1. Improving initial population set

$$x_p^{g+1}(l) = \begin{cases} \frac{x_p^g(l)}{\rho}, & 0 \le x_p^g(l) < \rho \\ \frac{x_p^g(l) - \rho}{0.5 - \rho}, & \rho \le x_p^g(l) < 0.5 \\ \frac{1 - \rho - x_p^g(l)}{0.5 - \rho}, & 0.5 \le x_p^g(l) < 1 - \rho \\ \frac{1 - x_p^g(l)}{\rho}, & 1 - \rho \le x_p^g(l) < 1. \end{cases}$$
(17)

## <u>2.</u> Balance between exploration/exploitation stage moving direction

$$\mathbf{x}_p^{g+1} = \mathbf{x}_p^g + \mathbf{r}_1 \mathcal{N}(0, \boldsymbol{\sigma}) \tag{18}$$

$$\mathbf{x}_p^{g+1} = \mathbf{x}_p^g + \mathbf{r}_2 \left[ w(\mathbf{x}^{\text{ub}} + \mathbf{x}^{\text{lb}} - \mathbf{x}_p^g) + (1 - w)(\mathbf{x}^{\text{best}} - \mathbf{x}_p^g) \right]$$
(19)

#### 3. Random hiding stage during exploitation

$$\mathbf{x}_{p}^{g+1} = \mathbf{x}_{p'}^{g} + (2U(0,1) - 1)\mathbf{r}(\mathbf{x}^{\text{best}} - \mathbf{x}_{p''}^{g})$$
 (20)

### Algorithm 1 Chaotic Gaussian-based Global AROs (CGG-ARO)

```
1: Initialization: Initialize population set: [\mathbf{x}_1^g, \mathbf{x}_2^g, \cdots, \mathbf{x}_p^p] follow Sec-
    tion III-A. // P is the size of the population;
 2: Set q = 0 and maximum number of iterations q_{\text{max}};
 3: Calculate fitness for population and find the best individual \mathbf{x}^{\text{best}}
  4: while g < g_{\text{max}} do
          for p \in [1:P] do
             Calculate the energy factor A [15];
              if A > 1 then
                  if U(0,1) > 0.5 then
                      Calculate the solution \mathbf{x}_{p}^{g+1} using Eq. (18);
10:
                      Calculate the solution \mathbf{x}_p^{g+1} using Eq. (19);
11:
12:
                  end if
13:
14:
                  if U(0,1) > 0.5 then
                      Calculate the solution \mathbf{x}_{p}^{g+1} using Eq. (20);
15:
16:
17:
                       Apply ARO's original updating rule;
18:
                  end if
19:
              end if
20:
              Retain the better solution based on fitness value;
21:
         end for
         Update the best solution \mathbf{x}^{\text{best}};
23: end while
24: Return: \mathbf{x}^{\text{best}}:
```



- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work

# Experimental results

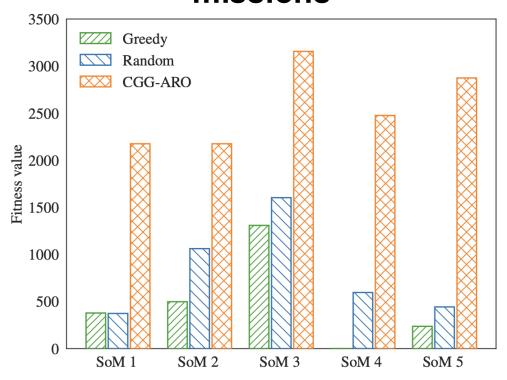
#### Mean and Standard Deviation of Algorithms Results over 15 runs

| Model   | Fitness             | Completed missions | Total benefits      |
|---------|---------------------|--------------------|---------------------|
| APO     | $2834.6 {\pm} 51.5$ | $22.8{\pm}0.6$     | $1138.2 \pm 30.9$   |
| SHADE   | $2876.8 {\pm} 68.4$ | $23.2 {\pm} 0.8$   | $1158.2 {\pm} 39.4$ |
| L-SHADE | $2885.6 {\pm} 68.8$ | $23.4{\pm}0.9$     | $1168.2 {\pm} 43.4$ |
| EO      | $2868.3 {\pm} 48.2$ | $23.3{\pm}0.7$     | $1164.8 {\pm} 35.6$ |
| ARO     | $2909.0{\pm}76.1$   | $23.7{\pm}0.9$     | $1181.5{\pm}45.4$   |
| CGG-ARO | $2941.2 {\pm 84.6}$ | $24.0 \!\pm\! 1.0$ | $1198.2 {\pm} 49.4$ |

CGG-ARO has outstanding results in all measurement metrices

# Experimental results

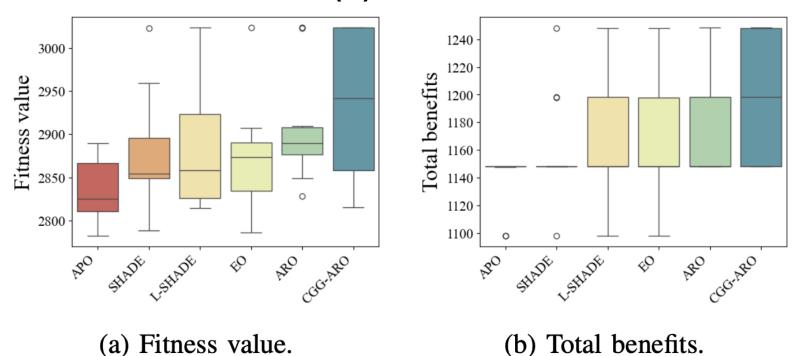
# Fitness values with different set of missions



CGG-ARO archives excellent performance compared to others

# Experimental results

### **Boxplot comparison of (a) the fitness** value and (b) the total benefits



CGG-ARO consistently outperforms all baselines across all measured metric

- 1. Introduction, Problem statement, System model
- 2. Optimization problem formulation
- 3. Proposed meta-heuristic algorithm
- 4. Experimental results
- 5. Conclusion and future work

### Conclusion and future work

#### **Conclusion**

- CGG-ARO optimizes mission assignment & task offloading in Open RAN–ITS.
- Considers dependencies, deadlines, cost, delays.
- Outperforms baselines: more missions completed, higher benefits.
- Shows strong potential for real-time ITS optimization.

#### Future Work

- Larger-scale / multi-region ITS.
- Energy-aware vehicle scheduling.
- Hybrid ML + optimization approaches.
- Real Open RAN/MEC testbed evaluation.



